| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iseqlg.p |
|- P = ( Base ` G ) |
| 2 |
|
iseqlg.m |
|- .- = ( dist ` G ) |
| 3 |
|
iseqlg.i |
|- I = ( Itv ` G ) |
| 4 |
|
iseqlg.l |
|- L = ( LineG ` G ) |
| 5 |
|
iseqlg.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
iseqlg.a |
|- ( ph -> A e. P ) |
| 7 |
|
iseqlg.b |
|- ( ph -> B e. P ) |
| 8 |
|
iseqlg.c |
|- ( ph -> C e. P ) |
| 9 |
|
elex |
|- ( G e. TarskiG -> G e. _V ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 11 |
10 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
| 12 |
11
|
oveq1d |
|- ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) |
| 13 |
|
fveq2 |
|- ( g = G -> ( cgrG ` g ) = ( cgrG ` G ) ) |
| 14 |
13
|
breqd |
|- ( g = G -> ( x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> <-> x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> ) ) |
| 15 |
12 14
|
rabeqbidv |
|- ( g = G -> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |
| 16 |
|
df-eqlg |
|- eqltrG = ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |
| 17 |
|
ovex |
|- ( P ^m ( 0 ..^ 3 ) ) e. _V |
| 18 |
17
|
rabex |
|- { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } e. _V |
| 19 |
15 16 18
|
fvmpt |
|- ( G e. _V -> ( eqltrG ` G ) = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |
| 20 |
5 9 19
|
3syl |
|- ( ph -> ( eqltrG ` G ) = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |
| 21 |
20
|
eleq2d |
|- ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) ) |
| 22 |
|
id |
|- ( x = <" A B C "> -> x = <" A B C "> ) |
| 23 |
|
fveq1 |
|- ( x = <" A B C "> -> ( x ` 1 ) = ( <" A B C "> ` 1 ) ) |
| 24 |
|
fveq1 |
|- ( x = <" A B C "> -> ( x ` 2 ) = ( <" A B C "> ` 2 ) ) |
| 25 |
|
fveq1 |
|- ( x = <" A B C "> -> ( x ` 0 ) = ( <" A B C "> ` 0 ) ) |
| 26 |
23 24 25
|
s3eqd |
|- ( x = <" A B C "> -> <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> = <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) |
| 27 |
22 26
|
breq12d |
|- ( x = <" A B C "> -> ( x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> <-> <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) |
| 28 |
27
|
elrab |
|- ( <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) |
| 29 |
28
|
a1i |
|- ( ph -> ( <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) ) |
| 30 |
6 7 8
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
| 31 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
| 32 |
1
|
fvexi |
|- P e. _V |
| 33 |
|
3nn0 |
|- 3 e. NN0 |
| 34 |
|
wrdmap |
|- ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) |
| 35 |
32 33 34
|
mp2an |
|- ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 36 |
30 31 35
|
sylanblc |
|- ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) |
| 37 |
36
|
biantrurd |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) ) |
| 38 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
| 39 |
7 38
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
| 40 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
| 41 |
8 40
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
| 42 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
| 43 |
6 42
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
| 44 |
39 41 43
|
s3eqd |
|- ( ph -> <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> = <" B C A "> ) |
| 45 |
44
|
breq2d |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) |
| 46 |
37 45
|
bitr3d |
|- ( ph -> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) |
| 47 |
21 29 46
|
3bitrd |
|- ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) |