| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseqlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | iseqlg.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | iseqlg.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | iseqlg.l |  |-  L = ( LineG ` G ) | 
						
							| 5 |  | iseqlg.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | iseqlg.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | iseqlg.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | iseqlg.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | elex |  |-  ( G e. TarskiG -> G e. _V ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 11 | 10 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = P ) | 
						
							| 12 | 11 | oveq1d |  |-  ( g = G -> ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) = ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( g = G -> ( cgrG ` g ) = ( cgrG ` G ) ) | 
						
							| 14 | 13 | breqd |  |-  ( g = G -> ( x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> <-> x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> ) ) | 
						
							| 15 | 12 14 | rabeqbidv |  |-  ( g = G -> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) | 
						
							| 16 |  | df-eqlg |  |-  eqltrG = ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) | 
						
							| 17 |  | ovex |  |-  ( P ^m ( 0 ..^ 3 ) ) e. _V | 
						
							| 18 | 17 | rabex |  |-  { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } e. _V | 
						
							| 19 | 15 16 18 | fvmpt |  |-  ( G e. _V -> ( eqltrG ` G ) = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) | 
						
							| 20 | 5 9 19 | 3syl |  |-  ( ph -> ( eqltrG ` G ) = { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) | 
						
							| 21 | 20 | eleq2d |  |-  ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) ) | 
						
							| 22 |  | id |  |-  ( x = <" A B C "> -> x = <" A B C "> ) | 
						
							| 23 |  | fveq1 |  |-  ( x = <" A B C "> -> ( x ` 1 ) = ( <" A B C "> ` 1 ) ) | 
						
							| 24 |  | fveq1 |  |-  ( x = <" A B C "> -> ( x ` 2 ) = ( <" A B C "> ` 2 ) ) | 
						
							| 25 |  | fveq1 |  |-  ( x = <" A B C "> -> ( x ` 0 ) = ( <" A B C "> ` 0 ) ) | 
						
							| 26 | 23 24 25 | s3eqd |  |-  ( x = <" A B C "> -> <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> = <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) | 
						
							| 27 | 22 26 | breq12d |  |-  ( x = <" A B C "> -> ( x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> <-> <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) | 
						
							| 28 | 27 | elrab |  |-  ( <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) | 
						
							| 29 | 28 | a1i |  |-  ( ph -> ( <" A B C "> e. { x e. ( P ^m ( 0 ..^ 3 ) ) | x ( cgrG ` G ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) ) | 
						
							| 30 | 6 7 8 | s3cld |  |-  ( ph -> <" A B C "> e. Word P ) | 
						
							| 31 |  | s3len |  |-  ( # ` <" A B C "> ) = 3 | 
						
							| 32 | 1 | fvexi |  |-  P e. _V | 
						
							| 33 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 34 |  | wrdmap |  |-  ( ( P e. _V /\ 3 e. NN0 ) -> ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) ) | 
						
							| 35 | 32 33 34 | mp2an |  |-  ( ( <" A B C "> e. Word P /\ ( # ` <" A B C "> ) = 3 ) <-> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 36 | 30 31 35 | sylanblc |  |-  ( ph -> <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) ) | 
						
							| 37 | 36 | biantrurd |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> <-> ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) ) ) | 
						
							| 38 |  | s3fv1 |  |-  ( B e. P -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 39 | 7 38 | syl |  |-  ( ph -> ( <" A B C "> ` 1 ) = B ) | 
						
							| 40 |  | s3fv2 |  |-  ( C e. P -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 41 | 8 40 | syl |  |-  ( ph -> ( <" A B C "> ` 2 ) = C ) | 
						
							| 42 |  | s3fv0 |  |-  ( A e. P -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 43 | 6 42 | syl |  |-  ( ph -> ( <" A B C "> ` 0 ) = A ) | 
						
							| 44 | 39 41 43 | s3eqd |  |-  ( ph -> <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> = <" B C A "> ) | 
						
							| 45 | 44 | breq2d |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) | 
						
							| 46 | 37 45 | bitr3d |  |-  ( ph -> ( ( <" A B C "> e. ( P ^m ( 0 ..^ 3 ) ) /\ <" A B C "> ( cgrG ` G ) <" ( <" A B C "> ` 1 ) ( <" A B C "> ` 2 ) ( <" A B C "> ` 0 ) "> ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) | 
						
							| 47 | 21 29 46 | 3bitrd |  |-  ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) |