| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ceqlg |  |-  eqltrG | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  g | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` g ) | 
						
							| 7 |  | cmap |  |-  ^m | 
						
							| 8 |  | cc0 |  |-  0 | 
						
							| 9 |  | cfzo |  |-  ..^ | 
						
							| 10 |  | c3 |  |-  3 | 
						
							| 11 | 8 10 9 | co |  |-  ( 0 ..^ 3 ) | 
						
							| 12 | 6 11 7 | co |  |-  ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | 
						
							| 13 | 3 | cv |  |-  x | 
						
							| 14 |  | ccgrg |  |-  cgrG | 
						
							| 15 | 5 14 | cfv |  |-  ( cgrG ` g ) | 
						
							| 16 |  | c1 |  |-  1 | 
						
							| 17 | 16 13 | cfv |  |-  ( x ` 1 ) | 
						
							| 18 |  | c2 |  |-  2 | 
						
							| 19 | 18 13 | cfv |  |-  ( x ` 2 ) | 
						
							| 20 | 8 13 | cfv |  |-  ( x ` 0 ) | 
						
							| 21 | 17 19 20 | cs3 |  |-  <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> | 
						
							| 22 | 13 21 15 | wbr |  |-  x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> | 
						
							| 23 | 22 3 12 | crab |  |-  { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } | 
						
							| 24 | 1 2 23 | cmpt |  |-  ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) | 
						
							| 25 | 0 24 | wceq |  |-  eqltrG = ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |