| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ceqlg |
|- eqltrG |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Base ` g ) |
| 7 |
|
cmap |
|- ^m |
| 8 |
|
cc0 |
|- 0 |
| 9 |
|
cfzo |
|- ..^ |
| 10 |
|
c3 |
|- 3 |
| 11 |
8 10 9
|
co |
|- ( 0 ..^ 3 ) |
| 12 |
6 11 7
|
co |
|- ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) |
| 13 |
3
|
cv |
|- x |
| 14 |
|
ccgrg |
|- cgrG |
| 15 |
5 14
|
cfv |
|- ( cgrG ` g ) |
| 16 |
|
c1 |
|- 1 |
| 17 |
16 13
|
cfv |
|- ( x ` 1 ) |
| 18 |
|
c2 |
|- 2 |
| 19 |
18 13
|
cfv |
|- ( x ` 2 ) |
| 20 |
8 13
|
cfv |
|- ( x ` 0 ) |
| 21 |
17 19 20
|
cs3 |
|- <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> |
| 22 |
13 21 15
|
wbr |
|- x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> |
| 23 |
22 3 12
|
crab |
|- { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } |
| 24 |
1 2 23
|
cmpt |
|- ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |
| 25 |
0 24
|
wceq |
|- eqltrG = ( g e. _V |-> { x e. ( ( Base ` g ) ^m ( 0 ..^ 3 ) ) | x ( cgrG ` g ) <" ( x ` 1 ) ( x ` 2 ) ( x ` 0 ) "> } ) |