| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ceqlg |
⊢ eqltrG |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 7 |
|
cmap |
⊢ ↑m |
| 8 |
|
cc0 |
⊢ 0 |
| 9 |
|
cfzo |
⊢ ..^ |
| 10 |
|
c3 |
⊢ 3 |
| 11 |
8 10 9
|
co |
⊢ ( 0 ..^ 3 ) |
| 12 |
6 11 7
|
co |
⊢ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) |
| 13 |
3
|
cv |
⊢ 𝑥 |
| 14 |
|
ccgrg |
⊢ cgrG |
| 15 |
5 14
|
cfv |
⊢ ( cgrG ‘ 𝑔 ) |
| 16 |
|
c1 |
⊢ 1 |
| 17 |
16 13
|
cfv |
⊢ ( 𝑥 ‘ 1 ) |
| 18 |
|
c2 |
⊢ 2 |
| 19 |
18 13
|
cfv |
⊢ ( 𝑥 ‘ 2 ) |
| 20 |
8 13
|
cfv |
⊢ ( 𝑥 ‘ 0 ) |
| 21 |
17 19 20
|
cs3 |
⊢ 〈“ ( 𝑥 ‘ 1 ) ( 𝑥 ‘ 2 ) ( 𝑥 ‘ 0 ) ”〉 |
| 22 |
13 21 15
|
wbr |
⊢ 𝑥 ( cgrG ‘ 𝑔 ) 〈“ ( 𝑥 ‘ 1 ) ( 𝑥 ‘ 2 ) ( 𝑥 ‘ 0 ) ”〉 |
| 23 |
22 3 12
|
crab |
⊢ { 𝑥 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∣ 𝑥 ( cgrG ‘ 𝑔 ) 〈“ ( 𝑥 ‘ 1 ) ( 𝑥 ‘ 2 ) ( 𝑥 ‘ 0 ) ”〉 } |
| 24 |
1 2 23
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 𝑥 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∣ 𝑥 ( cgrG ‘ 𝑔 ) 〈“ ( 𝑥 ‘ 1 ) ( 𝑥 ‘ 2 ) ( 𝑥 ‘ 0 ) ”〉 } ) |
| 25 |
0 24
|
wceq |
⊢ eqltrG = ( 𝑔 ∈ V ↦ { 𝑥 ∈ ( ( Base ‘ 𝑔 ) ↑m ( 0 ..^ 3 ) ) ∣ 𝑥 ( cgrG ‘ 𝑔 ) 〈“ ( 𝑥 ‘ 1 ) ( 𝑥 ‘ 2 ) ( 𝑥 ‘ 0 ) ”〉 } ) |