Metamath Proof Explorer


Definition df-eqlg

Description: Define the class of equilateral triangles. (Contributed by Thierry Arnoux, 27-Nov-2019)

Ref Expression
Assertion df-eqlg Equilaterals𝒢=gVxBaseg0..^3|x𝒢g⟨“x1x2x0”⟩

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceqlg classEquilaterals𝒢
1 vg setvarg
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 cmap class𝑚
8 cc0 class0
9 cfzo class..^
10 c3 class3
11 8 10 9 co class0..^3
12 6 11 7 co classBaseg0..^3
13 3 cv setvarx
14 ccgrg class𝒢
15 5 14 cfv class𝒢g
16 c1 class1
17 16 13 cfv classx1
18 c2 class2
19 18 13 cfv classx2
20 8 13 cfv classx0
21 17 19 20 cs3 class⟨“x1x2x0”⟩
22 13 21 15 wbr wffx𝒢g⟨“x1x2x0”⟩
23 22 3 12 crab classxBaseg0..^3|x𝒢g⟨“x1x2x0”⟩
24 1 2 23 cmpt classgVxBaseg0..^3|x𝒢g⟨“x1x2x0”⟩
25 0 24 wceq wffEquilaterals𝒢=gVxBaseg0..^3|x𝒢g⟨“x1x2x0”⟩