Metamath Proof Explorer


Theorem isgbo

Description: The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion isgbo ZGoldbachOddZOddpqrpOddqOddrOddZ=p+q+r

Proof

Step Hyp Ref Expression
1 eqeq1 z=Zz=p+q+rZ=p+q+r
2 1 anbi2d z=ZpOddqOddrOddz=p+q+rpOddqOddrOddZ=p+q+r
3 2 rexbidv z=ZrpOddqOddrOddz=p+q+rrpOddqOddrOddZ=p+q+r
4 3 2rexbidv z=ZpqrpOddqOddrOddz=p+q+rpqrpOddqOddrOddZ=p+q+r
5 df-gbo GoldbachOdd=zOdd|pqrpOddqOddrOddz=p+q+r
6 4 5 elrab2 ZGoldbachOddZOddpqrpOddqOddrOddZ=p+q+r