Metamath Proof Explorer


Theorem ismeti

Description: Properties that determine a metric. (Contributed by NM, 17-Nov-2006) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ismeti.0 XV
ismeti.1 D:X×X
ismeti.2 xXyXxDy=0x=y
ismeti.3 xXyXzXxDyzDx+zDy
Assertion ismeti DMetX

Proof

Step Hyp Ref Expression
1 ismeti.0 XV
2 ismeti.1 D:X×X
3 ismeti.2 xXyXxDy=0x=y
4 ismeti.3 xXyXzXxDyzDx+zDy
5 4 3expa xXyXzXxDyzDx+zDy
6 5 ralrimiva xXyXzXxDyzDx+zDy
7 3 6 jca xXyXxDy=0x=yzXxDyzDx+zDy
8 7 rgen2 xXyXxDy=0x=yzXxDyzDx+zDy
9 ismet XVDMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy
10 1 9 ax-mp DMetXD:X×XxXyXxDy=0x=yzXxDyzDx+zDy
11 2 8 10 mpbir2an DMetX