Metamath Proof Explorer


Theorem iso0

Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)

Ref Expression
Assertion iso0 Isom R , S

Proof

Step Hyp Ref Expression
1 f1o0 : 1-1 onto
2 ral0 x y x R y x S y
3 df-isom Isom R , S : 1-1 onto x y x R y x S y
4 1 2 3 mpbir2an Isom R , S