Metamath Proof Explorer


Theorem iso0

Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)

Ref Expression
Assertion iso0 IsomR,S

Proof

Step Hyp Ref Expression
1 f1o0 :1-1 onto
2 ral0 xyxRyxSy
3 df-isom IsomR,S:1-1 ontoxyxRyxSy
4 1 2 3 mpbir2an IsomR,S