Metamath Proof Explorer


Theorem isoeq2

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq2 R=THIsomR,SABHIsomT,SAB

Proof

Step Hyp Ref Expression
1 breq R=TxRyxTy
2 1 bibi1d R=TxRyHxSHyxTyHxSHy
3 2 2ralbidv R=TxAyAxRyHxSHyxAyAxTyHxSHy
4 3 anbi2d R=TH:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoBxAyAxTyHxSHy
5 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
6 df-isom HIsomT,SABH:A1-1 ontoBxAyAxTyHxSHy
7 4 5 6 3bitr4g R=THIsomR,SABHIsomT,SAB