Metamath Proof Explorer


Theorem isoeq3

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq3 S=THIsomR,SABHIsomR,TAB

Proof

Step Hyp Ref Expression
1 breq S=THxSHyHxTHy
2 1 bibi2d S=TxRyHxSHyxRyHxTHy
3 2 2ralbidv S=TxAyAxRyHxSHyxAyAxRyHxTHy
4 3 anbi2d S=TH:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoBxAyAxRyHxTHy
5 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
6 df-isom HIsomR,TABH:A1-1 ontoBxAyAxRyHxTHy
7 4 5 6 3bitr4g S=THIsomR,SABHIsomR,TAB