Metamath Proof Explorer
		
		
		
		Description:  An irreflexive, transitive, linear relation is a strict ordering.
       (Contributed by NM, 21-Jan-1996)  (Revised by Mario Carneiro, 9-Jul-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | issod.1 |  | 
					
						|  |  | issod.2 |  | 
				
					|  | Assertion | issod |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issod.1 |  | 
						
							| 2 |  | issod.2 |  | 
						
							| 3 | 2 | ralrimivva |  | 
						
							| 4 |  | df-so |  | 
						
							| 5 | 1 3 4 | sylanbrc |  |