Metamath Proof Explorer


Theorem istermc

Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b B = Base C
Assertion istermc Could not format assertion : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 istermc.b B = Base C
2 fveqeq2 c = C Base c = x Base C = x
3 2 exbidv c = C x Base c = x x Base C = x
4 1 eqeq1i B = x Base C = x
5 4 exbii x B = x x Base C = x
6 3 5 bitr4di c = C x Base c = x x B = x
7 df-termc Could not format TermCat = { c e. ThinCat | E. x ( Base ` c ) = { x } } : No typesetting found for |- TermCat = { c e. ThinCat | E. x ( Base ` c ) = { x } } with typecode |-
8 6 7 elrab2 Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) with typecode |-