Metamath Proof Explorer


Theorem istrkge

Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p P=BaseG
istrkg.d -˙=distG
istrkg.i I=ItvG
Assertion istrkge G𝒢TarskiEGVxPyPzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb

Proof

Step Hyp Ref Expression
1 istrkg.p P=BaseG
2 istrkg.d -˙=distG
3 istrkg.i I=ItvG
4 simpl p=Pi=Ip=P
5 simpr p=Pi=Ii=I
6 5 oveqd p=Pi=Ixiv=xIv
7 6 eleq2d p=Pi=IuxivuxIv
8 5 oveqd p=Pi=Iyiz=yIz
9 8 eleq2d p=Pi=IuyizuyIz
10 7 9 3anbi12d p=Pi=IuxivuyizxuuxIvuyIzxu
11 5 oveqd p=Pi=Ixia=xIa
12 11 eleq2d p=Pi=IyxiayxIa
13 5 oveqd p=Pi=Ixib=xIb
14 13 eleq2d p=Pi=IzxibzxIb
15 5 oveqd p=Pi=Iaib=aIb
16 15 eleq2d p=Pi=IvaibvaIb
17 12 14 16 3anbi123d p=Pi=IyxiazxibvaibyxIazxIbvaIb
18 4 17 rexeqbidv p=Pi=IbpyxiazxibvaibbPyxIazxIbvaIb
19 4 18 rexeqbidv p=Pi=IapbpyxiazxibvaibaPbPyxIazxIbvaIb
20 10 19 imbi12d p=Pi=IuxivuyizxuapbpyxiazxibvaibuxIvuyIzxuaPbPyxIazxIbvaIb
21 4 20 raleqbidv p=Pi=IvpuxivuyizxuapbpyxiazxibvaibvPuxIvuyIzxuaPbPyxIazxIbvaIb
22 4 21 raleqbidv p=Pi=IupvpuxivuyizxuapbpyxiazxibvaibuPvPuxIvuyIzxuaPbPyxIazxIbvaIb
23 4 22 raleqbidv p=Pi=IzpupvpuxivuyizxuapbpyxiazxibvaibzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb
24 4 23 raleqbidv p=Pi=IypzpupvpuxivuyizxuapbpyxiazxibvaibyPzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb
25 4 24 raleqbidv p=Pi=IxpypzpupvpuxivuyizxuapbpyxiazxibvaibxPyPzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb
26 1 3 25 sbcie2s f=G[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaibxPyPzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb
27 df-trkge 𝒢TarskiE=f|[˙Basef/p]˙[˙Itvf/i]˙xpypzpupvpuxivuyizxuapbpyxiazxibvaib
28 26 27 elab4g G𝒢TarskiEGVxPyPzPuPvPuxIvuyIzxuaPbPyxIazxIbvaIb