Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | istrkg.p | |
|
istrkg.d | |
||
istrkg.i | |
||
Assertion | istrkge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrkg.p | |
|
2 | istrkg.d | |
|
3 | istrkg.i | |
|
4 | simpl | |
|
5 | simpr | |
|
6 | 5 | oveqd | |
7 | 6 | eleq2d | |
8 | 5 | oveqd | |
9 | 8 | eleq2d | |
10 | 7 9 | 3anbi12d | |
11 | 5 | oveqd | |
12 | 11 | eleq2d | |
13 | 5 | oveqd | |
14 | 13 | eleq2d | |
15 | 5 | oveqd | |
16 | 15 | eleq2d | |
17 | 12 14 16 | 3anbi123d | |
18 | 4 17 | rexeqbidv | |
19 | 4 18 | rexeqbidv | |
20 | 10 19 | imbi12d | |
21 | 4 20 | raleqbidv | |
22 | 4 21 | raleqbidv | |
23 | 4 22 | raleqbidv | |
24 | 4 23 | raleqbidv | |
25 | 4 24 | raleqbidv | |
26 | 1 3 25 | sbcie2s | |
27 | df-trkge | |
|
28 | 26 27 | elab4g | |