Metamath Proof Explorer


Theorem isubgrumgr

Description: An induced subgraph of a multigraph is a multigraph. (Contributed by AV, 15-May-2025)

Ref Expression
Hypothesis isubgrupgr.v V = Vtx G
Assertion isubgrumgr G UMGraph S V G ISubGr S UMGraph

Proof

Step Hyp Ref Expression
1 isubgrupgr.v V = Vtx G
2 umgruhgr G UMGraph G UHGraph
3 1 isubgrsubgr G UHGraph S V G ISubGr S SubGraph G
4 2 3 sylan G UMGraph S V G ISubGr S SubGraph G
5 subumgr G UMGraph G ISubGr S SubGraph G G ISubGr S UMGraph
6 4 5 syldan G UMGraph S V G ISubGr S UMGraph