| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
1 2 3 4 5
|
subgrprop2 |
|
| 7 |
|
umgruhgr |
|
| 8 |
|
subgruhgrfun |
|
| 9 |
7 8
|
sylan |
|
| 10 |
9
|
ancoms |
|
| 11 |
10
|
funfnd |
|
| 12 |
11
|
adantl |
|
| 13 |
|
simplrl |
|
| 14 |
|
simplrr |
|
| 15 |
|
simpr |
|
| 16 |
1 3
|
subumgredg2 |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
fnfvrnss |
|
| 20 |
12 18 19
|
syl2anc |
|
| 21 |
|
df-f |
|
| 22 |
12 20 21
|
sylanbrc |
|
| 23 |
|
subgrv |
|
| 24 |
1 3
|
isumgrs |
|
| 25 |
24
|
adantr |
|
| 26 |
23 25
|
syl |
|
| 27 |
26
|
ad2antrl |
|
| 28 |
22 27
|
mpbird |
|
| 29 |
28
|
ex |
|
| 30 |
6 29
|
syl |
|
| 31 |
30
|
anabsi8 |
|