Metamath Proof Explorer


Theorem subusgr

Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Assertion subusgr G USGraph S SubGraph G S USGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 usgruhgr G USGraph G UHGraph
8 subgruhgrfun G UHGraph S SubGraph G Fun iEdg S
9 7 8 sylan G USGraph S SubGraph G Fun iEdg S
10 9 ancoms S SubGraph G G USGraph Fun iEdg S
11 10 funfnd S SubGraph G G USGraph iEdg S Fn dom iEdg S
12 11 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph iEdg S Fn dom iEdg S
13 simplrl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph x dom iEdg S S SubGraph G
14 usgrumgr G USGraph G UMGraph
15 14 adantl S SubGraph G G USGraph G UMGraph
16 15 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph G UMGraph
17 16 adantr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph x dom iEdg S G UMGraph
18 simpr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph x dom iEdg S x dom iEdg S
19 1 3 subumgredg2 S SubGraph G G UMGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
20 13 17 18 19 syl3anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
21 20 ralrimiva Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
22 fnfvrnss iEdg S Fn dom iEdg S x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2 ran iEdg S e 𝒫 Vtx S | e = 2
23 12 21 22 syl2anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph ran iEdg S e 𝒫 Vtx S | e = 2
24 df-f iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2 iEdg S Fn dom iEdg S ran iEdg S e 𝒫 Vtx S | e = 2
25 12 23 24 sylanbrc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
26 simp2 Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S iEdg S iEdg G
27 2 4 usgrfs G USGraph iEdg G : dom iEdg G 1-1 y 𝒫 Vtx G | y = 2
28 df-f1 iEdg G : dom iEdg G 1-1 y 𝒫 Vtx G | y = 2 iEdg G : dom iEdg G y 𝒫 Vtx G | y = 2 Fun iEdg G -1
29 ffun iEdg G : dom iEdg G y 𝒫 Vtx G | y = 2 Fun iEdg G
30 29 anim1i iEdg G : dom iEdg G y 𝒫 Vtx G | y = 2 Fun iEdg G -1 Fun iEdg G Fun iEdg G -1
31 28 30 sylbi iEdg G : dom iEdg G 1-1 y 𝒫 Vtx G | y = 2 Fun iEdg G Fun iEdg G -1
32 27 31 syl G USGraph Fun iEdg G Fun iEdg G -1
33 32 adantl S SubGraph G G USGraph Fun iEdg G Fun iEdg G -1
34 26 33 anim12ci Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph Fun iEdg G Fun iEdg G -1 iEdg S iEdg G
35 df-3an Fun iEdg G Fun iEdg G -1 iEdg S iEdg G Fun iEdg G Fun iEdg G -1 iEdg S iEdg G
36 34 35 sylibr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph Fun iEdg G Fun iEdg G -1 iEdg S iEdg G
37 f1ssf1 Fun iEdg G Fun iEdg G -1 iEdg S iEdg G Fun iEdg S -1
38 36 37 syl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph Fun iEdg S -1
39 df-f1 iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2 iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2 Fun iEdg S -1
40 25 38 39 sylanbrc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
41 subgrv S SubGraph G S V G V
42 1 3 isusgrs S V S USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
43 42 adantr S V G V S USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
44 41 43 syl S SubGraph G S USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
45 44 adantr S SubGraph G G USGraph S USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
46 45 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph S USGraph iEdg S : dom iEdg S 1-1 e 𝒫 Vtx S | e = 2
47 40 46 mpbird Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph S USGraph
48 47 ex Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G USGraph S USGraph
49 6 48 syl S SubGraph G S SubGraph G G USGraph S USGraph
50 49 anabsi8 G USGraph S SubGraph G S USGraph