Metamath Proof Explorer


Theorem subusgr

Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Assertion subusgr GUSGraphSSubGraphGSUSGraph

Proof

Step Hyp Ref Expression
1 eqid VtxS=VtxS
2 eqid VtxG=VtxG
3 eqid iEdgS=iEdgS
4 eqid iEdgG=iEdgG
5 eqid EdgS=EdgS
6 1 2 3 4 5 subgrprop2 SSubGraphGVtxSVtxGiEdgSiEdgGEdgS𝒫VtxS
7 usgruhgr GUSGraphGUHGraph
8 subgruhgrfun GUHGraphSSubGraphGFuniEdgS
9 7 8 sylan GUSGraphSSubGraphGFuniEdgS
10 9 ancoms SSubGraphGGUSGraphFuniEdgS
11 10 funfnd SSubGraphGGUSGraphiEdgSFndomiEdgS
12 11 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphiEdgSFndomiEdgS
13 simplrl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphxdomiEdgSSSubGraphG
14 usgrumgr GUSGraphGUMGraph
15 14 adantl SSubGraphGGUSGraphGUMGraph
16 15 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphGUMGraph
17 16 adantr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphxdomiEdgSGUMGraph
18 simpr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphxdomiEdgSxdomiEdgS
19 1 3 subumgredg2 SSubGraphGGUMGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
20 13 17 18 19 syl3anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
21 20 ralrimiva VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphxdomiEdgSiEdgSxe𝒫VtxS|e=2
22 fnfvrnss iEdgSFndomiEdgSxdomiEdgSiEdgSxe𝒫VtxS|e=2raniEdgSe𝒫VtxS|e=2
23 12 21 22 syl2anc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphraniEdgSe𝒫VtxS|e=2
24 df-f iEdgS:domiEdgSe𝒫VtxS|e=2iEdgSFndomiEdgSraniEdgSe𝒫VtxS|e=2
25 12 23 24 sylanbrc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphiEdgS:domiEdgSe𝒫VtxS|e=2
26 simp2 VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSiEdgSiEdgG
27 2 4 usgrfs GUSGraphiEdgG:domiEdgG1-1y𝒫VtxG|y=2
28 df-f1 iEdgG:domiEdgG1-1y𝒫VtxG|y=2iEdgG:domiEdgGy𝒫VtxG|y=2FuniEdgG-1
29 ffun iEdgG:domiEdgGy𝒫VtxG|y=2FuniEdgG
30 29 anim1i iEdgG:domiEdgGy𝒫VtxG|y=2FuniEdgG-1FuniEdgGFuniEdgG-1
31 28 30 sylbi iEdgG:domiEdgG1-1y𝒫VtxG|y=2FuniEdgGFuniEdgG-1
32 27 31 syl GUSGraphFuniEdgGFuniEdgG-1
33 32 adantl SSubGraphGGUSGraphFuniEdgGFuniEdgG-1
34 26 33 anim12ci VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphFuniEdgGFuniEdgG-1iEdgSiEdgG
35 df-3an FuniEdgGFuniEdgG-1iEdgSiEdgGFuniEdgGFuniEdgG-1iEdgSiEdgG
36 34 35 sylibr VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphFuniEdgGFuniEdgG-1iEdgSiEdgG
37 f1ssf1 FuniEdgGFuniEdgG-1iEdgSiEdgGFuniEdgS-1
38 36 37 syl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphFuniEdgS-1
39 df-f1 iEdgS:domiEdgS1-1e𝒫VtxS|e=2iEdgS:domiEdgSe𝒫VtxS|e=2FuniEdgS-1
40 25 38 39 sylanbrc VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
41 subgrv SSubGraphGSVGV
42 1 3 isusgrs SVSUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
43 42 adantr SVGVSUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
44 41 43 syl SSubGraphGSUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
45 44 adantr SSubGraphGGUSGraphSUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
46 45 adantl VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphSUSGraphiEdgS:domiEdgS1-1e𝒫VtxS|e=2
47 40 46 mpbird VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphSUSGraph
48 47 ex VtxSVtxGiEdgSiEdgGEdgS𝒫VtxSSSubGraphGGUSGraphSUSGraph
49 6 48 syl SSubGraphGSSubGraphGGUSGraphSUSGraph
50 49 anabsi8 GUSGraphSSubGraphGSUSGraph