Metamath Proof Explorer


Theorem isumgrs

Description: The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V=VtxG
isumgr.e E=iEdgG
Assertion isumgrs GUGUMGraphE:domEx𝒫V|x=2

Proof

Step Hyp Ref Expression
1 isumgr.v V=VtxG
2 isumgr.e E=iEdgG
3 1 2 isumgr GUGUMGraphE:domEx𝒫V|x=2
4 prprrab x𝒫V|x=2=x𝒫V|x=2
5 4 a1i GUx𝒫V|x=2=x𝒫V|x=2
6 5 feq3d GUE:domEx𝒫V|x=2E:domEx𝒫V|x=2
7 3 6 bitrd GUGUMGraphE:domEx𝒫V|x=2