Metamath Proof Explorer


Theorem isusgrs

Description: The property of being a simple graph, simplified version of isusgr . (Contributed by Alexander van der Vekens, 13-Aug-2017) (Revised by AV, 13-Oct-2020) (Proof shortened by AV, 24-Nov-2020)

Ref Expression
Hypotheses isuspgr.v V=VtxG
isuspgr.e E=iEdgG
Assertion isusgrs GUGUSGraphE:domE1-1x𝒫V|x=2

Proof

Step Hyp Ref Expression
1 isuspgr.v V=VtxG
2 isuspgr.e E=iEdgG
3 1 2 isusgr GUGUSGraphE:domE1-1x𝒫V|x=2
4 prprrab x𝒫V|x=2=x𝒫V|x=2
5 f1eq3 x𝒫V|x=2=x𝒫V|x=2E:domE1-1x𝒫V|x=2E:domE1-1x𝒫V|x=2
6 4 5 mp1i GUE:domE1-1x𝒫V|x=2E:domE1-1x𝒫V|x=2
7 3 6 bitrd GUGUSGraphE:domE1-1x𝒫V|x=2