Metamath Proof Explorer


Theorem itgcl

Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Hypotheses itgmpt.1 φ x A B V
itgcl.2 φ x A B 𝐿 1
Assertion itgcl φ A B dx

Proof

Step Hyp Ref Expression
1 itgmpt.1 φ x A B V
2 itgcl.2 φ x A B 𝐿 1
3 eqid B i k = B i k
4 3 dfitg A B dx = k = 0 3 i k 2 x if x A 0 B i k B i k 0
5 fzfid φ 0 3 Fin
6 ax-icn i
7 elfznn0 k 0 3 k 0
8 7 adantl φ k 0 3 k 0
9 expcl i k 0 i k
10 6 8 9 sylancr φ k 0 3 i k
11 elfzelz k 0 3 k
12 eqidd φ x if x A 0 B i k B i k 0 = x if x A 0 B i k B i k 0
13 eqidd φ x A B i k = B i k
14 12 13 2 1 iblitg φ k 2 x if x A 0 B i k B i k 0
15 11 14 sylan2 φ k 0 3 2 x if x A 0 B i k B i k 0
16 15 recnd φ k 0 3 2 x if x A 0 B i k B i k 0
17 10 16 mulcld φ k 0 3 i k 2 x if x A 0 B i k B i k 0
18 5 17 fsumcl φ k = 0 3 i k 2 x if x A 0 B i k B i k 0
19 4 18 eqeltrid φ A B dx