Metamath Proof Explorer


Theorem itgeq2dv

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Hypothesis itgeq2dv.1 φxAB=C
Assertion itgeq2dv φABdx=ACdx

Proof

Step Hyp Ref Expression
1 itgeq2dv.1 φxAB=C
2 1 ralrimiva φxAB=C
3 itgeq2 xAB=CABdx=ACdx
4 2 3 syl φABdx=ACdx