Metamath Proof Explorer


Theorem itsclc0yqe

Description: Lemma for itsclc0 . Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines ( A = B = 0 ). (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itscnhlc0yqe.t T = 2 B C
itscnhlc0yqe.u U = C 2 A 2 R 2
Assertion itsclc0yqe A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itscnhlc0yqe.t T = 2 B C
3 itscnhlc0yqe.u U = C 2 A 2 R 2
4 simp11 A B C R + X Y A
5 4 anim1i A B C R + X Y A = 0 A A = 0
6 5 ancoms A = 0 A B C R + X Y A A = 0
7 simpr12 A = 0 A B C R + X Y B
8 simpr13 A = 0 A B C R + X Y C
9 simpr2 A = 0 A B C R + X Y R +
10 simpr3 A = 0 A B C R + X Y X Y
11 1 2 3 itschlc0yqe A A = 0 B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
12 6 7 8 9 10 11 syl311anc A = 0 A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
13 12 ex A = 0 A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
14 4 anim1i A B C R + X Y A 0 A A 0
15 14 ancoms A 0 A B C R + X Y A A 0
16 simpr12 A 0 A B C R + X Y B
17 simpr13 A 0 A B C R + X Y C
18 simpr2 A 0 A B C R + X Y R +
19 simpr3 A 0 A B C R + X Y X Y
20 1 2 3 itscnhlc0yqe A A 0 B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
21 15 16 17 18 19 20 syl311anc A 0 A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
22 21 ex A 0 A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0
23 13 22 pm2.61ine A B C R + X Y X 2 + Y 2 = R 2 A X + B Y = C Q Y 2 + T Y + U = 0