Metamath Proof Explorer


Theorem iuncom

Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion iuncom xAyBC=yBxAC

Proof

Step Hyp Ref Expression
1 rexcom xAyBzCyBxAzC
2 eliun zyBCyBzC
3 2 rexbii xAzyBCxAyBzC
4 eliun zxACxAzC
5 4 rexbii yBzxACyBxAzC
6 1 3 5 3bitr4i xAzyBCyBzxAC
7 eliun zxAyBCxAzyBC
8 eliun zyBxACyBzxAC
9 6 7 8 3bitr4i zxAyBCzyBxAC
10 9 eqriv xAyBC=yBxAC