Metamath Proof Explorer


Theorem iuneq12i

Description: Equality theorem for indexed union. Inference version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iuneq12i.1 A = B
iuneq12i.2 C = D
Assertion iuneq12i x A C = x B D

Proof

Step Hyp Ref Expression
1 iuneq12i.1 A = B
2 iuneq12i.2 C = D
3 2 eleq2i t C t D
4 1 3 rexeqbii x A t C x B t D
5 4 abbii t | x A t C = t | x B t D
6 df-iun x A C = t | x A t C
7 df-iun x B D = t | x B t D
8 5 6 7 3eqtr4i x A C = x B D