Metamath Proof Explorer


Theorem iunrab

Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004) (Proof shortened by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion iunrab xAyB|φ=yB|xAφ

Proof

Step Hyp Ref Expression
1 iunab xAy|yBφ=y|xAyBφ
2 df-rab yB|φ=y|yBφ
3 2 a1i xAyB|φ=y|yBφ
4 3 iuneq2i xAyB|φ=xAy|yBφ
5 df-rab yB|xAφ=y|yBxAφ
6 r19.42v xAyBφyBxAφ
7 6 abbii y|xAyBφ=y|yBxAφ
8 5 7 eqtr4i yB|xAφ=y|xAyBφ
9 1 4 8 3eqtr4i xAyB|φ=yB|xAφ