Metamath Proof Explorer


Theorem iunrdx

Description: Re-index an indexed union. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses iunrdx.1 φF:AontoC
iunrdx.2 φy=FxD=B
Assertion iunrdx φxAB=yCD

Proof

Step Hyp Ref Expression
1 iunrdx.1 φF:AontoC
2 iunrdx.2 φy=FxD=B
3 fof F:AontoCF:AC
4 1 3 syl φF:AC
5 4 ffvelcdmda φxAFxC
6 foelrn F:AontoCyCxAy=Fx
7 1 6 sylan φyCxAy=Fx
8 2 eleq2d φy=FxzDzB
9 5 7 8 rexxfrd φyCzDxAzB
10 9 bicomd φxAzByCzD
11 10 abbidv φz|xAzB=z|yCzD
12 df-iun xAB=z|xAzB
13 df-iun yCD=z|yCzD
14 11 12 13 3eqtr4g φxAB=yCD