Metamath Proof Explorer


Theorem iunssdf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iunssdf.1 xφ
iunssdf.2 _xC
iunssdf.3 φxABC
Assertion iunssdf φxABC

Proof

Step Hyp Ref Expression
1 iunssdf.1 xφ
2 iunssdf.2 _xC
3 iunssdf.3 φxABC
4 1 3 ralrimia φxABC
5 2 iunssf xABCxABC
6 4 5 sylibr φxABC