Metamath Proof Explorer


Theorem iunssdf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iunssdf.1
|- F/ x ph
iunssdf.2
|- F/_ x C
iunssdf.3
|- ( ( ph /\ x e. A ) -> B C_ C )
Assertion iunssdf
|- ( ph -> U_ x e. A B C_ C )

Proof

Step Hyp Ref Expression
1 iunssdf.1
 |-  F/ x ph
2 iunssdf.2
 |-  F/_ x C
3 iunssdf.3
 |-  ( ( ph /\ x e. A ) -> B C_ C )
4 1 3 ralrimia
 |-  ( ph -> A. x e. A B C_ C )
5 2 iunssf
 |-  ( U_ x e. A B C_ C <-> A. x e. A B C_ C )
6 4 5 sylibr
 |-  ( ph -> U_ x e. A B C_ C )