Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunssdf.1 | |- F/ x ph |
|
iunssdf.2 | |- F/_ x C |
||
iunssdf.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
||
Assertion | iunssdf | |- ( ph -> U_ x e. A B C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunssdf.1 | |- F/ x ph |
|
2 | iunssdf.2 | |- F/_ x C |
|
3 | iunssdf.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
4 | 1 3 | ralrimia | |- ( ph -> A. x e. A B C_ C ) |
5 | 2 | iunssf | |- ( U_ x e. A B C_ C <-> A. x e. A B C_ C ) |
6 | 4 5 | sylibr | |- ( ph -> U_ x e. A B C_ C ) |