Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunssdf.1 | |- F/ x ph |
|
| iunssdf.2 | |- F/_ x C |
||
| iunssdf.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
||
| Assertion | iunssdf | |- ( ph -> U_ x e. A B C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunssdf.1 | |- F/ x ph |
|
| 2 | iunssdf.2 | |- F/_ x C |
|
| 3 | iunssdf.3 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
| 4 | 1 3 | ralrimia | |- ( ph -> A. x e. A B C_ C ) |
| 5 | 2 | iunssf | |- ( U_ x e. A B C_ C <-> A. x e. A B C_ C ) |
| 6 | 4 5 | sylibr | |- ( ph -> U_ x e. A B C_ C ) |