Metamath Proof Explorer


Theorem iunssf

Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis iunssf.1 _xC
Assertion iunssf xABCxABC

Proof

Step Hyp Ref Expression
1 iunssf.1 _xC
2 df-iun xAB=y|xAyB
3 2 sseq1i xABCy|xAyBC
4 abss y|xAyBCyxAyByC
5 dfss2 BCyyByC
6 5 ralbii xABCxAyyByC
7 ralcom4 xAyyByCyxAyByC
8 1 nfcri xyC
9 8 r19.23 xAyByCxAyByC
10 9 albii yxAyByCyxAyByC
11 6 7 10 3bitrri yxAyByCxABC
12 3 4 11 3bitri xABCxABC