Metamath Proof Explorer


Theorem ixpeq2d

Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ixpeq2d.1 xφ
ixpeq2d.2 φxAB=C
Assertion ixpeq2d φxAB=xAC

Proof

Step Hyp Ref Expression
1 ixpeq2d.1 xφ
2 ixpeq2d.2 φxAB=C
3 2 ex φxAB=C
4 1 3 ralrimi φxAB=C
5 ixpeq2 xAB=CxAB=xAC
6 4 5 syl φxAB=xAC