Metamath Proof Explorer


Theorem ixpprc

Description: A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain A , which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion ixpprc ¬AVxAB=

Proof

Step Hyp Ref Expression
1 neq0 ¬xAB=ffxAB
2 ixpfn fxABfFnA
3 fndm fFnAdomf=A
4 vex fV
5 4 dmex domfV
6 3 5 eqeltrrdi fFnAAV
7 2 6 syl fxABAV
8 7 exlimiv ffxABAV
9 1 8 sylbi ¬xAB=AV
10 9 con1i ¬AVxAB=