Metamath Proof Explorer


Theorem ixpssmap2g

Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg avoids ax-rep . (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion ixpssmap2g xABVxABxABA

Proof

Step Hyp Ref Expression
1 ixpf fxABf:AxAB
2 1 adantl xABVfxABf:AxAB
3 n0i fxAB¬xAB=
4 ixpprc ¬AVxAB=
5 3 4 nsyl2 fxABAV
6 elmapg xABVAVfxABAf:AxAB
7 5 6 sylan2 xABVfxABfxABAf:AxAB
8 2 7 mpbird xABVfxABfxABA
9 8 ex xABVfxABfxABA
10 9 ssrdv xABVxABxABA