Metamath Proof Explorer


Theorem ixpssmapg

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion ixpssmapg xABVxABxABA

Proof

Step Hyp Ref Expression
1 n0i fxAB¬xAB=
2 ixpprc ¬AVxAB=
3 1 2 nsyl2 fxABAV
4 id xABVxABV
5 iunexg AVxABVxABV
6 3 4 5 syl2anr xABVfxABxABV
7 ixpssmap2g xABVxABxABA
8 6 7 syl xABVfxABxABxABA
9 simpr xABVfxABfxAB
10 8 9 sseldd xABVfxABfxABA
11 10 ex xABVfxABfxABA
12 11 ssrdv xABVxABxABA