Metamath Proof Explorer


Theorem jca3

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010)

Ref Expression
Hypotheses jca3.1 φψχ
jca3.2 θτ
Assertion jca3 φψθχτ

Proof

Step Hyp Ref Expression
1 jca3.1 φψχ
2 jca3.2 θτ
3 1 imp φψχ
4 3 a1d φψθχ
5 4 2 jca2 φψθχτ
6 5 ex φψθχτ