Metamath Proof Explorer


Theorem joindmss

Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses joindmss.b B=BaseK
joindmss.j ˙=joinK
joindmss.k φKV
Assertion joindmss φdom˙B×B

Proof

Step Hyp Ref Expression
1 joindmss.b B=BaseK
2 joindmss.j ˙=joinK
3 joindmss.k φKV
4 relopabv Relxy|xydomlubK
5 eqid lubK=lubK
6 5 2 joindm KVdom˙=xy|xydomlubK
7 3 6 syl φdom˙=xy|xydomlubK
8 7 releqd φReldom˙Relxy|xydomlubK
9 4 8 mpbiri φReldom˙
10 vex xV
11 10 a1i φxV
12 vex yV
13 12 a1i φyV
14 5 2 3 11 13 joindef φxydom˙xydomlubK
15 eqid K=K
16 3 adantr φxydomlubKKV
17 simpr φxydomlubKxydomlubK
18 1 15 5 16 17 lubelss φxydomlubKxyB
19 18 ex φxydomlubKxyB
20 10 12 prss xByBxyB
21 opelxpi xByBxyB×B
22 20 21 sylbir xyBxyB×B
23 19 22 syl6 φxydomlubKxyB×B
24 14 23 sylbid φxydom˙xyB×B
25 9 24 relssdv φdom˙B×B