Metamath Proof Explorer


Theorem joineu

Description: Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses joinval2.b B=BaseK
joinval2.l ˙=K
joinval2.j ˙=joinK
joinval2.k φKV
joinval2.x φXB
joinval2.y φYB
joinlem.e φXYdom˙
Assertion joineu φ∃!xBX˙xY˙xzBX˙zY˙zx˙z

Proof

Step Hyp Ref Expression
1 joinval2.b B=BaseK
2 joinval2.l ˙=K
3 joinval2.j ˙=joinK
4 joinval2.k φKV
5 joinval2.x φXB
6 joinval2.y φYB
7 joinlem.e φXYdom˙
8 eqid lubK=lubK
9 8 3 4 5 6 joindef φXYdom˙XYdomlubK
10 biid yXYy˙xzByXYy˙zx˙zyXYy˙xzByXYy˙zx˙z
11 4 adantr φXYdomlubKKV
12 simpr φXYdomlubKXYdomlubK
13 1 2 8 10 11 12 lubeu φXYdomlubK∃!xByXYy˙xzByXYy˙zx˙z
14 13 ex φXYdomlubK∃!xByXYy˙xzByXYy˙zx˙z
15 1 2 3 4 5 6 joinval2lem XBYByXYy˙xzByXYy˙zx˙zX˙xY˙xzBX˙zY˙zx˙z
16 5 6 15 syl2anc φyXYy˙xzByXYy˙zx˙zX˙xY˙xzBX˙zY˙zx˙z
17 16 reubidv φ∃!xByXYy˙xzByXYy˙zx˙z∃!xBX˙xY˙xzBX˙zY˙zx˙z
18 14 17 sylibd φXYdomlubK∃!xBX˙xY˙xzBX˙zY˙zx˙z
19 9 18 sylbid φXYdom˙∃!xBX˙xY˙xzBX˙zY˙zx˙z
20 7 19 mpd φ∃!xBX˙xY˙xzBX˙zY˙zx˙z