Metamath Proof Explorer


Theorem kmlem16

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004)

Ref Expression
Hypotheses kmlem14.1 φzyvxyvzv
kmlem14.2 ψzxvzvyuzuyu=v
kmlem14.3 χzx∃!vvzy
Assertion kmlem16 zxvzwxzwvzwy¬yxχyzvuyxφ¬yxψ

Proof

Step Hyp Ref Expression
1 kmlem14.1 φzyvxyvzv
2 kmlem14.2 ψzxvzvyuzuyu=v
3 kmlem14.3 χzx∃!vvzy
4 1 2 3 kmlem14 zxvzwxzwvzwyzvuyxφ
5 1 2 3 kmlem15 ¬yxχzvu¬yxψ
6 5 exbii y¬yxχyzvu¬yxψ
7 4 6 orbi12i zxvzwxzwvzwy¬yxχyzvuyxφyzvu¬yxψ
8 19.43 yzvuyxφzvu¬yxψyzvuyxφyzvu¬yxψ
9 pm3.24 ¬yx¬yx
10 simpl yxφyx
11 10 sps uyxφyx
12 11 exlimivv zvuyxφyx
13 simpl ¬yxψ¬yx
14 13 sps u¬yxψ¬yx
15 14 exlimivv zvu¬yxψ¬yx
16 12 15 anim12i zvuyxφzvu¬yxψyx¬yx
17 9 16 mto ¬zvuyxφzvu¬yxψ
18 19.33b ¬zvuyxφzvu¬yxψzvuyxφvu¬yxψzvuyxφzvu¬yxψ
19 17 18 ax-mp zvuyxφvu¬yxψzvuyxφzvu¬yxψ
20 10 exlimiv uyxφyx
21 13 exlimiv u¬yxψ¬yx
22 20 21 anim12i uyxφu¬yxψyx¬yx
23 9 22 mto ¬uyxφu¬yxψ
24 19.33b ¬uyxφu¬yxψuyxφ¬yxψuyxφu¬yxψ
25 23 24 ax-mp uyxφ¬yxψuyxφu¬yxψ
26 25 exbii vuyxφ¬yxψvuyxφu¬yxψ
27 19.43 vuyxφu¬yxψvuyxφvu¬yxψ
28 26 27 bitr2i vuyxφvu¬yxψvuyxφ¬yxψ
29 28 albii zvuyxφvu¬yxψzvuyxφ¬yxψ
30 19 29 bitr3i zvuyxφzvu¬yxψzvuyxφ¬yxψ
31 30 exbii yzvuyxφzvu¬yxψyzvuyxφ¬yxψ
32 7 8 31 3bitr2i zxvzwxzwvzwy¬yxχyzvuyxφ¬yxψ