Metamath Proof Explorer


Theorem kmlem6

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion kmlem6 zxzzxwxφA=zxvzwxφ¬vA

Proof

Step Hyp Ref Expression
1 r19.26 zxzwxφA=zxzzxwxφA=
2 n0 zvvz
3 2 biimpi zvvz
4 ne0i vAA
5 4 necon2bi A=¬vA
6 5 imim2i φA=φ¬vA
7 6 ralimi wxφA=wxφ¬vA
8 7 alrimiv wxφA=vwxφ¬vA
9 19.29r vvzvwxφ¬vAvvzwxφ¬vA
10 df-rex vzwxφ¬vAvvzwxφ¬vA
11 9 10 sylibr vvzvwxφ¬vAvzwxφ¬vA
12 3 8 11 syl2an zwxφA=vzwxφ¬vA
13 12 ralimi zxzwxφA=zxvzwxφ¬vA
14 1 13 sylbir zxzzxwxφA=zxvzwxφ¬vA