Database
BASIC TOPOLOGY
Topology
Quotient maps and quotient topology
kqfval
Next ⟩
kqfeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
kqfval
Description:
Value of the function appearing in
df-kq
.
(Contributed by
Mario Carneiro
, 25-Aug-2015)
Ref
Expression
Hypothesis
kqval.2
⊢
F
=
x
∈
X
⟼
y
∈
J
|
x
∈
y
Assertion
kqfval
⊢
J
∈
V
∧
A
∈
X
→
F
⁡
A
=
y
∈
J
|
A
∈
y
Proof
Step
Hyp
Ref
Expression
1
kqval.2
⊢
F
=
x
∈
X
⟼
y
∈
J
|
x
∈
y
2
id
⊢
A
∈
X
→
A
∈
X
3
rabexg
⊢
J
∈
V
→
y
∈
J
|
A
∈
y
∈
V
4
eleq1
⊢
x
=
A
→
x
∈
y
↔
A
∈
y
5
4
rabbidv
⊢
x
=
A
→
y
∈
J
|
x
∈
y
=
y
∈
J
|
A
∈
y
6
5
1
fvmptg
⊢
A
∈
X
∧
y
∈
J
|
A
∈
y
∈
V
→
F
⁡
A
=
y
∈
J
|
A
∈
y
7
2
3
6
syl2anr
⊢
J
∈
V
∧
A
∈
X
→
F
⁡
A
=
y
∈
J
|
A
∈
y