Database
BASIC ORDER THEORY
Lattices
Lattices
lattr
Next ⟩
latasymd
Metamath Proof Explorer
Ascii
Unicode
Theorem
lattr
Description:
A lattice ordering is transitive. (
sstr
analog.)
(Contributed by
NM
, 17-Nov-2011)
Ref
Expression
Hypotheses
latref.b
⊢
B
=
Base
K
latref.l
⊢
≤
˙
=
≤
K
Assertion
lattr
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
Z
→
X
≤
˙
Z
Proof
Step
Hyp
Ref
Expression
1
latref.b
⊢
B
=
Base
K
2
latref.l
⊢
≤
˙
=
≤
K
3
latpos
⊢
K
∈
Lat
→
K
∈
Poset
4
1
2
postr
⊢
K
∈
Poset
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
Z
→
X
≤
˙
Z
5
3
4
sylan
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
Z
→
X
≤
˙
Z