Metamath Proof Explorer


Theorem lattr

Description: A lattice ordering is transitive. ( sstr analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses latref.b B=BaseK
latref.l ˙=K
Assertion lattr KLatXBYBZBX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 latref.b B=BaseK
2 latref.l ˙=K
3 latpos KLatKPoset
4 1 2 postr KPosetXBYBZBX˙YY˙ZX˙Z
5 3 4 sylan KLatXBYBZBX˙YY˙ZX˙Z