Metamath Proof Explorer


Theorem lcmfunsn

Description: The _lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020)

Ref Expression
Assertion lcmfunsn YYFinNlcm_YN=lcm_YlcmN

Proof

Step Hyp Ref Expression
1 lcmfunsnlem YYFinkmYmklcm_Yknlcm_Yn=lcm_Ylcmn
2 sneq n=Nn=N
3 2 uneq2d n=NYn=YN
4 3 fveq2d n=Nlcm_Yn=lcm_YN
5 oveq2 n=Nlcm_Ylcmn=lcm_YlcmN
6 4 5 eqeq12d n=Nlcm_Yn=lcm_Ylcmnlcm_YN=lcm_YlcmN
7 6 rspccv nlcm_Yn=lcm_YlcmnNlcm_YN=lcm_YlcmN
8 1 7 simpl2im YYFinNlcm_YN=lcm_YlcmN
9 8 3impia YYFinNlcm_YN=lcm_YlcmN