Metamath Proof Explorer


Theorem ldilset

Description: The set of lattice dilations for a fiducial co-atom W . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ldilset.b B=BaseK
ldilset.l ˙=K
ldilset.h H=LHypK
ldilset.i I=LAutK
ldilset.d D=LDilKW
Assertion ldilset KCWHD=fI|xBx˙Wfx=x

Proof

Step Hyp Ref Expression
1 ldilset.b B=BaseK
2 ldilset.l ˙=K
3 ldilset.h H=LHypK
4 ldilset.i I=LAutK
5 ldilset.d D=LDilKW
6 1 2 3 4 ldilfset KCLDilK=wHfI|xBx˙wfx=x
7 6 fveq1d KCLDilKW=wHfI|xBx˙wfx=xW
8 breq2 w=Wx˙wx˙W
9 8 imbi1d w=Wx˙wfx=xx˙Wfx=x
10 9 ralbidv w=WxBx˙wfx=xxBx˙Wfx=x
11 10 rabbidv w=WfI|xBx˙wfx=x=fI|xBx˙Wfx=x
12 eqid wHfI|xBx˙wfx=x=wHfI|xBx˙wfx=x
13 4 fvexi IV
14 13 rabex fI|xBx˙Wfx=xV
15 11 12 14 fvmpt WHwHfI|xBx˙wfx=xW=fI|xBx˙Wfx=x
16 7 15 sylan9eq KCWHLDilKW=fI|xBx˙Wfx=x
17 5 16 eqtrid KCWHD=fI|xBx˙Wfx=x