Metamath Proof Explorer


Theorem ldilset

Description: The set of lattice dilations for a fiducial co-atom W . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ldilset.b 𝐵 = ( Base ‘ 𝐾 )
ldilset.l = ( le ‘ 𝐾 )
ldilset.h 𝐻 = ( LHyp ‘ 𝐾 )
ldilset.i 𝐼 = ( LAut ‘ 𝐾 )
ldilset.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
Assertion ldilset ( ( 𝐾𝐶𝑊𝐻 ) → 𝐷 = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 ldilset.b 𝐵 = ( Base ‘ 𝐾 )
2 ldilset.l = ( le ‘ 𝐾 )
3 ldilset.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ldilset.i 𝐼 = ( LAut ‘ 𝐾 )
5 ldilset.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
6 1 2 3 4 ldilfset ( 𝐾𝐶 → ( LDil ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) )
7 6 fveq1d ( 𝐾𝐶 → ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤𝐻 ↦ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) ‘ 𝑊 ) )
8 breq2 ( 𝑤 = 𝑊 → ( 𝑥 𝑤𝑥 𝑊 ) )
9 8 imbi1d ( 𝑤 = 𝑊 → ( ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) ↔ ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) ) )
10 9 ralbidv ( 𝑤 = 𝑊 → ( ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) ↔ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) ) )
11 10 rabbidv ( 𝑤 = 𝑊 → { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )
12 eqid ( 𝑤𝐻 ↦ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) = ( 𝑤𝐻 ↦ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } )
13 4 fvexi 𝐼 ∈ V
14 13 rabex { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } ∈ V
15 11 12 14 fvmpt ( 𝑊𝐻 → ( ( 𝑤𝐻 ↦ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) ‘ 𝑊 ) = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )
16 7 15 sylan9eq ( ( 𝐾𝐶𝑊𝐻 ) → ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )
17 5 16 syl5eq ( ( 𝐾𝐶𝑊𝐻 ) → 𝐷 = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )