Metamath Proof Explorer


Theorem leagne3

Description: Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023)

Ref Expression
Hypotheses isleag.p P=BaseG
isleag.g φG𝒢Tarski
isleag.a φAP
isleag.b φBP
isleag.c φCP
isleag.d φDP
isleag.e φEP
isleag.f φFP
leagne.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
Assertion leagne3 φDE

Proof

Step Hyp Ref Expression
1 isleag.p P=BaseG
2 isleag.g φG𝒢Tarski
3 isleag.a φAP
4 isleag.b φBP
5 isleag.c φCP
6 isleag.d φDP
7 isleag.e φEP
8 isleag.f φFP
9 leagne.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
10 eqid ItvG=ItvG
11 eqid hl𝒢G=hl𝒢G
12 2 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩G𝒢Tarski
13 3 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩AP
14 4 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩BP
15 5 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩CP
16 6 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩DP
17 7 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩EP
18 simplr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩xP
19 simprr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
20 1 10 11 12 13 14 15 16 17 18 19 cgrane3 φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩ED
21 20 necomd φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩DE
22 1 2 3 4 5 6 7 8 isleag φ⟨“ABC”⟩𝒢G⟨“DEF”⟩xPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
23 9 22 mpbid φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
24 21 23 r19.29a φDE