Metamath Proof Explorer


Theorem leagne4

Description: Deduce inequality from the less-than angle relation. (Contributed by Thierry Arnoux, 25-Feb-2023)

Ref Expression
Hypotheses isleag.p P=BaseG
isleag.g φG𝒢Tarski
isleag.a φAP
isleag.b φBP
isleag.c φCP
isleag.d φDP
isleag.e φEP
isleag.f φFP
leagne.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
Assertion leagne4 φFE

Proof

Step Hyp Ref Expression
1 isleag.p P=BaseG
2 isleag.g φG𝒢Tarski
3 isleag.a φAP
4 isleag.b φBP
5 isleag.c φCP
6 isleag.d φDP
7 isleag.e φEP
8 isleag.f φFP
9 leagne.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
10 eqid ItvG=ItvG
11 eqid hl𝒢G=hl𝒢G
12 simplr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩xP
13 6 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩DP
14 7 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩EP
15 8 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩FP
16 2 ad2antrr φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩G𝒢Tarski
17 simprl φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩x𝒢G⟨“DEF”⟩
18 1 10 11 12 13 14 15 16 17 inagne2 φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩FE
19 1 2 3 4 5 6 7 8 isleag φ⟨“ABC”⟩𝒢G⟨“DEF”⟩xPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
20 9 19 mpbid φxPx𝒢G⟨“DEF”⟩⟨“ABC”⟩𝒢G⟨“DEx”⟩
21 18 20 r19.29a φFE