Metamath Proof Explorer


Theorem leibpilem1

Description: Lemma for leibpi . (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by Steven Nguyen, 23-Mar-2023)

Ref Expression
Assertion leibpilem1 N0¬N=0¬2NNN120

Proof

Step Hyp Ref Expression
1 nn0onn N0¬2NN
2 nn0oddm1d2 N0¬2NN120
3 2 biimpa N0¬2NN120
4 1 3 jca N0¬2NNN120
5 4 adantrl N0¬N=0¬2NNN120