Metamath Proof Explorer


Theorem lgsval2

Description: The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime 2 ). (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsval2 APA/LP=ifP=2if2A0ifAmod81711AP12+1modP1

Proof

Step Hyp Ref Expression
1 eqid nifnifn=2if2A0ifAmod81711An12+1modn1npCntP1=nifnifn=2if2A0ifAmod81711An12+1modn1npCntP1
2 1 lgsval2lem APA/LP=ifP=2if2A0ifAmod81711AP12+1modP1