Metamath Proof Explorer


Theorem liminfvald

Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvald.1 φ F V
liminfvald.2 G = k sup F k +∞ * * <
Assertion liminfvald φ lim inf F = sup ran G * <

Proof

Step Hyp Ref Expression
1 liminfvald.1 φ F V
2 liminfvald.2 G = k sup F k +∞ * * <
3 2 liminfval F V lim inf F = sup ran G * <
4 1 3 syl φ lim inf F = sup ran G * <