Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Glauco Siliprandi  
				Limits  
				Inferior limit (lim inf)  
				limsupvald  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   The superior limit of a sequence F  of extended real numbers is the
       infimum of the set of suprema of all restrictions of F  to an
       upperset of reals .  (Contributed by Glauco Siliprandi , 2-Jan-2022) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						limsupvald.1  
						   ⊢   φ   →   F  ∈  V         
					 
					
						 
						 
						limsupvald.2  
						  ⊢   G  =    k  ∈   ℝ   ⟼   sup    F   k  +∞       ∩    ℝ   *        ℝ   *    <             
					 
				
					 
					Assertion 
					limsupvald  
					   ⊢   φ   →    lim sup  ⁡  F     =   inf   ran  ⁡  G      ℝ   *    <          
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							limsupvald.1  
							    ⊢   φ   →   F  ∈  V         
						 
						
							2  
							
								
							 
							limsupvald.2  
							   ⊢   G  =    k  ∈   ℝ   ⟼   sup    F   k  +∞       ∩    ℝ   *        ℝ   *    <             
						 
						
							3  
							
								2 
							 
							limsupval  
							    ⊢   F  ∈  V    →    lim sup  ⁡  F     =   inf   ran  ⁡  G      ℝ   *    <          
						 
						
							4  
							
								1  3 
							 
							syl  
							    ⊢   φ   →    lim sup  ⁡  F     =   inf   ran  ⁡  G      ℝ   *    <