Metamath Proof Explorer


Theorem linds1

Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis islinds.b B = Base W
Assertion linds1 X LIndS W X B

Proof

Step Hyp Ref Expression
1 islinds.b B = Base W
2 elfvdm X LIndS W W dom LIndS
3 1 islinds W dom LIndS X LIndS W X B I X LIndF W
4 2 3 syl X LIndS W X LIndS W X B I X LIndF W
5 4 ibi X LIndS W X B I X LIndF W
6 5 simpld X LIndS W X B