Metamath Proof Explorer


Theorem linds2

Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion linds2 XLIndSWIXLIndFW

Proof

Step Hyp Ref Expression
1 elfvdm XLIndSWWdomLIndS
2 eqid BaseW=BaseW
3 2 islinds WdomLIndSXLIndSWXBaseWIXLIndFW
4 1 3 syl XLIndSWXLIndSWXBaseWIXLIndFW
5 4 ibi XLIndSWXBaseWIXLIndFW
6 5 simprd XLIndSWIXLIndFW