Metamath Proof Explorer


Theorem linindsi

Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b B = Base M
islininds.z Z = 0 M
islininds.r R = Scalar M
islininds.e E = Base R
islininds.0 0 ˙ = 0 R
Assertion linindsi S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙

Proof

Step Hyp Ref Expression
1 islininds.b B = Base M
2 islininds.z Z = 0 M
3 islininds.r R = Scalar M
4 islininds.e E = Base R
5 islininds.0 0 ˙ = 0 R
6 linindsv S linIndS M S V M V
7 1 2 3 4 5 islininds S V M V S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
8 6 7 syl S linIndS M S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
9 8 ibi S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙